

Newfoundland & Labrador, Canada

Dr. Seshu Adluri

Structural Steel Design Compression Members

Columns in Buildings

Columns in Buildings

Compression members -Dr. Seshu Adluri

Column supports

Compression members -Dr. Seshu Adluri

Compression members in trusses

Compression members in OWSJ

Compression members in bridges

Howrah bridge, Kolkata, India

Compression members -Dr. Seshu Adluri

ewfoundland & Labrador, Canada

Compression members in towers

Compression in equipment

Introduction

Steel Compression members

- Building columns
- □ Frame Bracing

□ Truss members (chords and bracing)

Useful in pure compression as well as in beamcolumns

Design Clauses: CAN/CSA-S16

- □ Over-all strength as per Clause 13.3
- □ Local buckling check: Clause 11 (Table 1)
- Built-up members: Clause 19

Column erection

Different column c/s shapes

Circular hollow section Rectangular hollow section

Hot-rolled H-section

Welded box

section

Welded

H-section

Welded cover plate on hot-rolled H-section

Figure 1 Simple compression members

Different column c/s shapes

U or angle sections used as main components

I or H-sections as main components

I-section laced with small U U-sections battened with flat bars

Figure 4 Built-up columns

Figure 1 The three states of equilibrium

Instability and bifurcation

Instability effect
 To compress or not to compress?
 Energy considerations

Indiand & Labrador, Canada

Compression members -Dr. Seshu Adluri

Compression terminology -review

Compression members

Bucking

 Elastic (Euler) buckling
 Inelastic buckling

 Buckling modes

 Overall buckling

- □ Flexural buckling
- Torsional buckling
- Torsional-flexural buckling
- Local buckling

Simply supported column subjected to axial load F

Elastic Buckling

Equilibrium equation

Internal moment + applied moment = 0

$$EI\frac{d^2w}{dx^2} + Pw = 0;$$
 $w = 0 @ y = 0;$ $w = 0 @ y = L$

Solution: $w = A \sin \frac{\pi x}{L}$ satisfies the b.c.

Substituting int o the differential equation,

$$EI\left(-A\left(\frac{\pi}{L}\right)^{2}\sin\frac{\pi x}{L}\right) + P\left(A\sin\frac{\pi x}{L}\right) = 0$$
$$-\left(\frac{\pi}{L}\right)^{2}EI + P = 0$$
$$P_{cr} = \frac{\pi^{2}EI}{L^{2}}$$

ndland & Labrador, Canada

subjected to axial load F

Free body diagram

Compression members

000

Guided

 $\theta = V = 0$

 $w=\theta=0$

Moment of inertia
Radius of gyration
Effective length
Slenderness ratio

Free

V=M=0

Hinged

w=M=0

Effective length factors

 Different end conditions give different lengths for equivalent half-sine wave

Fixed and free ends

Theoretical Effective length factors

Figure 4 Buckling of a column in a non-sway frame

Theoretical Effective length factors

Figure 5 Buckling of a column in a sway frame

Compression members -Dr. Seshu Adluri

Effective lengths in different directions

IN EMORIAL UNIVERSITY lewfoundland & Labrador, Canada

Compression members -Dr. Seshu Adluri

Effective length factors

Canadian practice

US recommended values Conditions	Theoretical Eff. Length, L _{eff} ^T	Engrg. Eff. Length L _{eff} ^E
Free-Free	L	(1.2·L)
Hinged-Free	L	(1.2·L)
Hinged-Hinged (Simply-Supported)	L	L
Guided-Free	2·L	(2.1·L)
Guided-Hinged	2·L	2·L
Guided-Guided	L	1.2·L
Clamped-Free (Cantilever)	2·L	2.1·L
Clamped-Hinged	0.7·L	0.8·L
Clamped-Guided	L	1.2·L
Clamped-Clamped	0.5·L	0.65·L

Canadian recommended values – Boundary Appendix F Conditions CAN/CSA/S16-01	Theoretical Eff. Length, L _{eff} ^T	Engrg. Eff. Length L _{eff} ^E
Free-Free	L	(1.2·L)
Hinged-Free	L	(1.2·L)
Hinged-Hinged (Simply-Supported)	L	L
Guided-Free	2·L	(2.0·L)
Guided-Hinged	2·L	2·L
Guided-Guided	L	1.2·L
Clamped-Free (Cantilever)	2·L	2.0·L
Clamped-Hinged	0.7·L	0.8·L
Clamped-Guided	L	1.2·L
Clamped-Clamped	0.5·L	0.65·L

Effective lengths in frame columns

Figure 6 Subassemblage for Donnell's formula

Compression members -Dr. Seshu Adluri

Effective lengths in frame columns

Figure 8 Example of substitute frame

Real columns -Factors for consideration

 Partially plastic buckling

certime = -1.0)

 Initial out-ofstraightness (L/2000 to L/1000)

Real columns -Factors for consideration

 Residual stresses in Hot-rolled shapes (idealized)

0.S

10.5

0.5

5

30.5

W 14 x 426

h/b < 1.2

h

Fig. 3.3 Residual-stress distribution in rolled wide-flange shapes.

0

ksi

10

20

10

20

Real columns -Factors for consideration

 Residual stresses in Hot-rolled shapes (idealized)

Example of residual stresses due to hot-rolling

Example of residual stresses due to welding

(a)

Combination with axial stresses

Figure 10 Non-dimensional buckling curve

Compression members -Dr. Seshu Adluri

Practical column failure

Figure 11 Real column test results and buckling curves

Material	Short Column (Strength Limit)	Intermediate Column (Inelastic Stability Limit)	Long Column (Elastic Stability Limit)
	Slenderness Ratio (kL/r = L _{eff} / r)		
Structural Steel	<i>kL/r</i> < 40	40 < <i>kL/r</i> < 150	<i>kL/r</i> > 150
Aluminum Alloy <u>AA 6061</u> - T6	<i>kL/r</i> < 9.5	9.5 < <i>kL/r</i> < 66	<i>kL/r</i> > 66
Aluminum Alloy <u>AA 2014</u> - T6	<i>kL/r</i> < 12	12 < <i>kL/r</i> < 55	<i>kL/r</i> > 55
Wood	<i>kL/r</i> < 11	11 < <i>kL/r</i> < (18~30)	(18~30)< <i>kL/r</i> <50
MEMORIAL UNIVERSITY			Compression members -Dr. Seshu Adluri

Newfoundland & Labrador, Canada

Over-all buckling

- Flexural
- Torsional
- Torsional-flexural

Flexural Buckling

- About minor axis (with higher kL/R) for doubly symmetric shapes
- About minor axis (the unsymmetric axis) for singly symmetric shapes

¹⁹⁶⁴ Alaska quake, EqIIS collection

Flexural Buckling

Compression members -Dr. Seshu Adluri

Torsional buckling

- Short lengths

 Usually kL/r less than approx. 50
 - doubly symmetric sections
 - Wide flange sections, cruciform sections, double channels, point symmetric sections,
 - Not for closed sections such as HSS since they are very strong in torsion

Torsional buckling of cruciform section Compression members -Dr. Seshu Adluri

Torsion

Torque is a moment that causes twisting along the length of a bar. The twist is also the torsional deformation. For a circular shaft, the torque (or torsional moment) rotates each c/s relative to the nearby c/s.

Torsion of non-circular sections

- Torsion of non-circular sections involves torsional shear and warping.
- Torsional shear needs the use of torsion constant J.
 - J is similar to the use of polar moment of inertia for circular shafts.
 - \Box J= Σ bt³/3
- Warping calculation needs the use od the constant C_w.
- Both J and C_w are listed in the Handbook
- In addition, we need to use the effective length in torsion (k_zL_z). Usually, k_z is taken as 1.0

Torsional buckling of open sections

- Buckling in pure torsional mode (not needed for HSS or closed sections):
 - \Box K_{z} is normally taken as 1.0.
 - \Box C_{w} , J, r_x , r_y are given in the properties tables, x and y are the axes of symmetry of the section.
 - □ E= 200 000 MPa (assumed), G=77 000 MPa (assumed).

$$\begin{split} F_{ez} &= \frac{1}{A\overline{r_o}^2} \left(\frac{\pi^2 E C_w}{\left(K_z L\right)^2} + G J \right) \qquad \overline{r_o}^2 = x_o^2 + y_o^2 + r_x^2 + r_y^2 \\ \lambda &= \sqrt{\frac{F_y}{F_e}} \qquad \qquad C_r = \phi A F_y \left(1 + \lambda^{2n}\right)^{-1/n} \end{split}$$

Shear centre

- Sections always rotate about shear centre
- Shear centre lies on the axis of symmetry

Figure 10 Equal flanged section and examples of sections with one axis of symmetry

Torsionalflexural buckling

- For of singly symmetric sections, about the major axis
- For unsymmetric sections, about any axis
- Rotation is always about shear centre

I-section

(b) Cold - formed sections

angle

Compression members -Dr. Seshu Adluri

Newfoundland & Labrador, Canada

Shear flow

Shear-flow distribution

Shear-flow distribution

Shear flow distribution

С

Shear centre

(b)

(c)

Shear flow effect

Newfoundland & Labrador, Canada

Newfoundland & Labrador, Canada

Compression members -Dr. Seshu Adluri

Local (Plate) buckling

Plate buckling

Figure 2 Fundamental case for compressive plate buckling

Compression members -Dr. Seshu Adluri

Plate buckling

Effective width concept

Figure 5 Stress distribution: (a) in the pre-buckling range and (b) in the post-buckling range

Compression members -Dr. Seshu Adluri

Plate buckling

- Different types of buckling depending on
 - □ b/t ratio
 - end conditions for plate segments
 - □ Table 1 for columns
 - Table 2 for beams and beam-columns

(c) Patch loaded web

(d) Web subject to shear

Figure 1 Types of plate buckling

Web buckling

MEMORIAL UNIVERSITY ewfoundland & Labrador, Canada

Figure 6 Influence of plate slenderness on buckling strength

Built-up columns

- Two or more sections
 - □ Stitch bolts
 - Batten plates
 - Lacing
 - Combined batten & lacing
 - Perforated cover plates

(Single)

Lacing systems

Battened column

x

v

C

-d

0.269 in.

x

1.231 in.

Combination of laced and battened systems

Figure 5 Laced and battened columns

Closely spaced built-up members

Detail of star-battened member

Perforated plate column

Built-up members

Newfoundland & Labrador, Canada

Built-up columns

Built-up columns

Closely spaced channels

(a) Partial and idealised loading for buckling analysis

Built-up columns

- Built-up member buckling is somewhat similar to frame buckling
 - Batten acts like beams
 - Battens get shear and moment due to the bending of the frame like built-up member at the time of buckling

(b) Symmetrical (non-sway) mode of buckling

(c) Antisymmetrical (sway) mode of buckling

Figure 6 Buckling of frames

Built-up columns

2

- Design as per normal procedure
 - Moment of inertia about the axis which shifts due to the presence of gap needs parallel axis theorem
 - Effective slenderness ratio as per Cl. 19.1

References

AISC Digital Library (2008)

ESDEP-the European Steel Design Education Programme - lectures

Earthquake Image Information System

Hibbeler, R.C., 2008. "Mechanics of Solids," Prentice-Hall

