## Dr. Seshu Adluri

## Structural Steel Design Compression Members



## Columns in Buildings



## Column supports



## Compression members in trusses



## Compression members in trusses



## Compression members in OWSJ



## Compression members in bridges



Howrah bridge, Kolkata, India

## Compression members in towers



Eiffel Tower (1887-89)



## Introduction

- Steel Compression members
$\square$ Building columns
$\square$ Frame Bracing
$\square$ Truss members (chords and bracing)
- Useful in pure compression as well as in beamcolumns
- Design Clauses: CAN/CSA-S16
$\square$ Over-all strength as per Clause 13.3
$\square$ Local buckling check: Clause 11 (Table 1)
$\square$ Built-up members: Clause 19


## Column erection




# Different column c/s shapes 



Figure 1 Simple compression members

# Different column c/s shapes 



U or angle sections used as main components


I or H -sections as main components


Figure 4 Built-up columns

# Instability and bifurcation 


(a) Stable

- Stable, neutral and unstable equilibriums

(b)
(c)

Unstable

(d) Neutral

## Buckling



## Instability and bifurcation

- Instability effect
$\square$ To compress or not to compress?
$\square$ Energy considerations



## Compression terminology -review

- Moment of inertia $I_{x}=\int_{A} y^{2} d A$
- Parallel axis theorem ${ }^{A} \quad I_{x}=I_{x}+A \bar{x}^{2}$
- Radius of gyration
- Effective length
- Slenderness ratio
- Principal axes (major and minor)
- Critical Load
- Factored compressive strength, $\mathrm{C}_{\mathrm{r}}$



## Compression members

■ Bucking
$\square$ Elastic (Euler) buckling
$\square$ Inelastic buckling

- Buckling modes
- Overall buckling
$\square$ Flexural buckling
$\square$ Torsional buckling
$\square$ Torsional-flexural buckling


Simply supported column subjected to axial load $F$

- Local buckling


## Elastic Buckling

- Equilibrium equation
$\square$ Internal moment + applied moment $=0$
$E I \frac{d^{2} w}{d x^{2}}+P w=0 ; \quad w=0 @ y=0 ; \quad w=0 @ y=L$
Solution: $\quad w=A \sin \frac{\pi x}{L} \quad$ satisfies the b.c.
Substituting int $o$ the differential equation,
$E I\left(-A\left(\frac{\pi}{L}\right)^{2} \sin \frac{\pi x}{L}\right)+P\left(A \sin \frac{\pi x}{L}\right)=0$

$$
\begin{aligned}
& -\left(\frac{\pi}{L}\right)^{2} E I+P=0 \\
& P_{c r}=\frac{\pi^{2} E I}{L^{2}}
\end{aligned}
$$



Simply supported column subjected to axial load $F$

## Inelastic Buckling




## Compression members

- Moment of inertia
- Radius of gyration
- Effective length
- Slenderness ratio

$$
\sigma_{p l}=\sigma_{y}-\kappa \Lambda / \rho_{e s}
$$

$$
\sigma_{p l}=(0.5 \sim 1.0) \sigma_{y}
$$

Euler's Formula
(Elastic Stability Limit)


$$
r=\sqrt{\frac{I}{A}}
$$

Clamped $w=\theta=0$
$w=M=0$

Free
$V=M=0$


Guided
$\theta=\boldsymbol{V}=0$

## Effective length factors

- Different end conditions give different lengths for equivalent half-sine wave


Fixed and free ends

## Theoretical Effective length factors


(a)

(b)

(d)

(c)

(e)

Figure 4 Buckling of a column in a non-sway frame

## Theoretical Effective length factors



(b)

(d)

(c)

(e)

Figure 5 Buckling of a column in a sway frame

## Effective length factors

- US
practice


## Buckled shape of column shown by dashed line

\author{

}

|  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.5 | 0.7 | 1.0 | 1.0 | 2.0 | 2.0 |
| 0.65 | 0.80 | 1.2 | 1.0 | 2.10 | 2.0 |

Rotation fixed and translation fixed
Rotation free and translation fixed
Rotation fixed and translation free
Rotation free and translation free

## Effective lengths in different directions



(b)

$y-y$ axis buckling
(c)

## Effective length factors

## Canadian practice

$\mathrm{k}=.65$

$\mathrm{k}=1.0$
$\mathrm{k}=\mathbf{2 . 0}$
$\mathrm{k}=\mathbf{2 . 0}$

$w=M=0$
Free
$V=M=0$
Guided
$\theta=\boldsymbol{V}=0$
Clamped $w=\theta=0$

Theoretical Eff.
Length, $L_{\text {eff }}{ }^{\top}$

Engrg. Eff. Length $L_{\text {eff }}{ }^{E}$

L
L

L
$2 \cdot L$
$2 \cdot L$
L
$2 \cdot L$
0.7•L
0.8-L

L
1.2.L

Clamped-Clamped
$0.5 \cdot L$
$0.65 \cdot L$
(1.2.L)
(1.2.L)

L
0.7•L
$0.8 . L$
$1.2 . L$
$2 \cdot L$

(2.0.L)

$$
2 \cdot L
$$


,
$(2.0 . L)$
$2 . L$


Engrg. Eff. Length $L_{\text {eff }}{ }^{\mathrm{E}}$

## 

$L$



相
$\qquad$

Clamped-GuidedClamped-Guided

Guided-Free

Guided-Hinged

Clamped-Free

(Cantilever)

Guided-Free

Guided-Free

Guided-Guided
Clamped-Free
Clamped-Free
(Cantilever)
(Cantilever)

## Clamped-Hinged <br> Clamped-Hinged

$\qquad$
-
Free-Free
Hinged-Free
Hinged-Hinged
(Simply-Supported)
Free-Free
Hinged-Free
Hinged-Hinged
$\quad$ (Simply-Supported) $L$
-

\section*{Canadian <br> recommended values - <br> Boundary Appendix F Conditions

CAN/CSA/S16-01 <br> Theoretical Eff.
Length, $L$

## Length, $L_{\text {eff }}{ }^{\top}$

}
## Length, $L_{\text {eff }}{ }^{\top}$

}

- 0.65



## Effective lengths in frame columns



Figure 6 Subassemblage for Donnell's formula

## Effective lengths in frame columns


(a)

(b)

Figure 8 Example of substitute frame

## Real columns -Factors for consideration

- Partially plastic buckling
- Initial out-ofstraightness (L/2000 to L/1000)


Increase in axial load

Figure 9 Spread of yielding as collapse approaches

## Real columns Factors for consideration



- Residual stresses in Hot-rolled shapes (idealized)


Fig. 3.3 Residual-stress distribution in rolled wide-flange shapes.

Real columns Factors for consideration

- Residual stresses in Hot-rolled shapes (idealized)

Example of residual stresses due to hot-rolling

Example of residual stresses due to welding
(a)


or $=$
$=$
(b)

$\sigma_{n}$ reaching $f_{y}$

## Perfect column failure



Failure by buckling

## Perfect column failure



Figure 10 Non-dimensional buckling curve

## Practical column failure



Figure 11 Real column test results and buckling curves

## Column curve



Short column Intermediate column Long column

Short Column (Strength Limit)

## Intermediate

 Column (Inelastic Stability Limit)Long Column (Elastic Stability Limit)

## Slenderness Ratio ( $k L / r=L_{\text {eff }} / r$ )

Structural Stee

Aluminum Alloy

Aluminum Alloy
AA 2014-T6

Wood

$$
k L / r<40
$$

$$
40<k L / r<150
$$

$$
k L / r>150
$$

$$
k L / r<9.5
$$

$$
9.5<k L / r<66
$$

$$
k L / r>66
$$

$k L / r<12$
$12<k L / r<55$
$k L / r>55$

$$
k L / r<11
$$

$$
11<k L / r<(18 \sim 30)
$$

$$
(18 \sim 30)<k L / r<50
$$

## Over-all buckling

- Flexural
- Torsional
- Torsional-flexural


## Flexural Buckling

- About minor axis (with higher kL/R) for doubly symmetric shapes
- About minor axis (the unsymmetric axis) for singly symmetric shapes



## Flexural Buckling



## Torsional buckling

- Short lengths
$\square$ Usually kL/r less than approx. 50
$\square$ doubly symmetric sections
- Wide flange sections, cruciform sections, double channels, point symmetric sections, ....
$\square$ Not for closed sections such as HSS since they are very strong in torsion


Torsional buckling of

## Torsion

Torque is a moment that causes twisting along the length of a bar. The twist is also the torsional deformation. For a circular shaft, the torque (or torsional moment) rotates each c/s relative to the nearby
c/s.

Before deformation
(a)


After deformation


## Torsion of non-circular sections

- Torsion of non-circular sections involves torsional shear and warping.
- Torsional shear needs the use of torsion constant J.
$\square J$ is similar to the use of polar moment of inertia for circular shafts.
$\square \mathrm{J}=\mathrm{\Sigma bt}{ }^{3} / 3$
- Warping calculation needs the use od the constant $\mathrm{C}_{\mathrm{w}}$.
- Both $J$ and $\mathrm{C}_{\mathrm{w}}$ are listed in the Handbook
- In addition, we need to use the effective length in torsion $\left(k_{z} L_{z}\right)$. Usually, $k_{z}$ is taken as 1.0


## Torsional buckling of open sections

- Buckling in pure torsional mode (not needed for HSS or closed sections):
$\square K_{z}$ is normally taken as 1.0.
$\square C_{w}, J, r_{x}, r_{y}$ are given in the properties tables, $x$ and $y$ are the axes of symmetry of the section.
$\square E=200000 \mathrm{MPa}$ (assumed), G=77000 MPa (assumed).

$$
\begin{aligned}
& F_{e z}=\frac{1}{A \bar{r}_{o}^{2}}\left(\frac{\pi^{2} E C_{w}}{\left(K_{z} L\right)^{2}}+G J\right) \quad \bar{r}_{o}^{2}=x_{o}^{2}+y_{o}^{2}+r_{x}^{2}+r_{y}^{2} \\
& \lambda=\sqrt{\frac{F_{y}}{F_{e}}} \quad \quad C_{r}=\phi A F_{y}\left(1+\lambda^{2 n}\right)^{-1 / n}
\end{aligned}
$$

## Shear centre

- Sections always rotate about shear centre
- Shear centre lies on the axis of symmetry

(a)

Equal flanged I

(b)

Channel

(c)

Unequal flanged I

Figure 10 Equal flanged section and examples of sections with one axis of symmetry

## Torsionalflexural buckling



Angle


U-section


T-section (double-angle)


T-section (1/2 I-section)

- For of singly symmetric
(a) Hot-rolled sections sections, about the major axis
- For
unsymmetric sections, about any axis
- Rotation is always about shear centre

T-section Equal-leg
angle


Singly symmetric I-section
(b) Cold - formed sections

## Torsionalflexural buckling



## Shear flow



## Shear flow



Shear-flow distribution

## Shear flow



Shear flow distribution
Shear-flow distribution


## Shear centre




Shear-flow distribution
(b)


## Shear flow effect



## Shear centre




## Local (Plate) buckling



## Plate buckling



Figure 2 Fundamental case for compressive plate buckling

## Plate buckling

- Effective width concept


Figure 5 Stress distribution: (a) in the pre-buckling range and (b) in the post-buckling range

## Plate buckling

- Different types of buckling depending on
$\square \mathrm{b} / \mathrm{t}$ ratio
$\square$ end conditions for plate segments
$\square$ Table 1 for columns
$\square$ Table 2 for beams and beam-columns



## Web buckling



Fiaure 8-22 Web buckling i

Figure 8-23 Bearing plate and web stiffer

# Plate buckling <br> - b/t ratio effect <br>  <br> (a) Perfect plate 


(b) Actual plate

Figure 6 Influence of plate slenderness on buckling strength
(Single)


Lacing systems

(Double)

## Built-up columns

- Two or more sections
$\square$ Stitch bolts
$\square$ Batten plates
$\square$ Lacing
$\square$ Combined batten \& lacingPerforated cover plates



Battened column


Combination of laced and battened systems

Figure 5 Laced and battened columns

## Built-up columns



Closely spaced built-up members


Detail of star-battened member

## Built-up columns



# Built-up columns 



- Closely spaced channels


## Built-up columns

(a) Partial and idealised loading for buckling analysis

- Built-up member buckling is somewhat similar to frame buckling
$\square$ Batten acts like beams

(b) Symmetrical (non-sway) mode of buckling
$\square$ Battens get shear and moment due to the bending of the frame like built-up member at the time of buckling

(c) Antisymmetrical (sway) mode of buckling


Figure 8 Battened built-up column

## Built-up columns

- Design as per normal procedure
$\square$ Moment of inertia about the axis which shifts due to the presence of gap needs parallel axis theorem
$\square$ Effective slenderness ratio as per CI. 19.1



## References

## AISC Digital Library (2008)

## ESDEP-the European Steel Design Education Programme - lectures

## Earthquake Image Information System

Hibbeler, R.C., 2008. "Mechanics of Solids," Prentice-Hall

